A Fast Algorithm to Compute Maximum Likelihood Estimates for the Hypergeometric Software Reliability Model

نویسنده

  • Frank Padberg
چکیده

We present a fast and exact algorithm to compute maximum likelihood estimates for the number of faults initially contained in a software, using the hypergeometric software reliability model. The algorithm is based on a rigorous mathematical analysis of the growth behavior of the likelihood function for the model. We also clarify the stochastic process underlying the model and prove a recursion formula which is central for most previous work on the hypergeometric software reliability model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood Estimates for the Hypergeometric Software Reliability Model

We present a fast and exact novel algorithm to compute maximum likelihood estimates for the number of defects initially contained in a software, using the hypergeometric software reliability model. The algorithm is based on a rigorous and comprehensive mathematical analysis of the growth behavior of the likelihood function for the hypergeometric model. We also study a numerical example taken fr...

متن کامل

EM-algorithm in Software Reliability Modeling

The purpose of this paper is to give an overview on the use of the Expectation-Maximization (EM) algorithm in software reliability modeling. This algorithm is related to Maximum Likelihood Estimates (MLE) of parameters in a context of missing data. Different ways to implement this algorithm are highlighted for hidden Markov models in software reliability.

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

Failure Process Modeling with Censored Data in Accelerated Life Tests

Manufacturers need to evaluate the reliability of their products in order to increase the customer satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis of the system that has been less focused on. This paper introduces a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001